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Abstract
In some instances group comparisons in terms of upper
or lower portions of the score distributions aré more
informative than comparisons of central tendency.
These comparisons can be done by carrying out a split
on the data prior to an analysis of variance (ANOVA).
The resulting test statistic from ANOVA is not
distributed as an F ratio however, and requires
evaluation for significance relative to an empirical

monte-carlo distribution. An example and computer

program are presented.
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Splits Analysis: A Method for
Noncentral Tendency Comparisons

In the behavioral sciences, comparison of g;oups
typically concerns contrast of central tendency. For
example, a researcher interested in the effects of
violent vs nonviolent tv programs would typically
compare the mean, or perhaps the median, subsequent
aggression of the first group vs the second group.
There are instances, however when researchers would be
interested not with central tendency differences;
rather they would be concerned with differences in say
the upper ten percent or the lower third of each group.
For example, an industrial psychologist may want to
investigate the efficacy of two training techniques in
resultant skill acquisition. Since only the top ten
percent of trainees may be hired or promoted, the two
techniques would be best evaluated in terms of their
effect on the upper ten percent of each group.

Lunneborg (1986) has described a bootstrap quantile
analysis appropriate for comparing two groups at given
percentiles. His procedure yields a probability value
that the two groups' scores at a given percentile
differ by chance. The present work describes an
alternative method to Lunneborg's bootstrap procedure,

and provides a computer implementation of the
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procedure. The alternative is referred to as a splits
analysis as it concerns carrying out a split on the
data prior to statistical analysis.

Consider a data set for which we are interested in
comparing the upper half of the score distributions of
two groups. To carry out the splits analysis the data
would be rank ordered within groups, a median split
would be carried out on each group, and the upper half
of the data would be analyzed using a one-way analysis
of variance (ANOVA). Although an ANOVA is carried out
on the data the resulting test statistic is not
evaluated using standard F tables. Research by the
author has indicated that such an approach would lead
to a great inflation in the Type 1 error rate. For
example, using standard F distribution critical values
typically resulted in actual Type I error rates in
excess of .20 for the nominal .05 significance level
(Rasmussen, 1990).

Instead of using the F distribution, monte carlo
methods are used to evaluate the significance of the
obtained test statistic. Specifically, a large nuaber,
say 5000, data sets of the same sample size would be
generated under the null hypothesis using a pseudo-
random normal deviate generator. Each of the data sets
would be processed identically as the original data

set, i.e., an empirical test score distribution under
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the null hypothesis for the same sample size and
data split would be created. The obtained test
statistic is then evaluated relative to this empirical
distribution to determine significance. For example,
if 10 of the monte carlo values are larger than the
obtained value then the probability value associated
with the obtained value would be 10/5000 = 0.002.

The previous example wor.d be roughly analogous
to Lunneborg's bootstrap comparison of the 75th
percentiles. 1Initial research by the author has
indicated that the splits analysis approach maintained
the .01 and .05 alpha levels, whereas the bootstrap
procedure tended to be overly conservative (Rasmussen,
1990).

Table 1 presents a small data set along with the
results from a splits analysis. In the example, there
are 9 cases per group and the splits analysis compares

the lower third of each group. The ANOVA test

Insert Table 1 about Here

statistic resulting from the splits analysis is 36.75.
If this were an standard F ratio (i.e, with 1 and 4
degrees of freedom) it would have a probability value

of .0037. The splits analysis probability of 0.016 is
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less extreme.

Similar to bootstrapping and approximate
randomization procedures the probability value
associated with splits analysis is an approximation
that dépends’upon the number of monte carlo simulations
and the significance level (Rasmussen, 1988; Rasmussen,
1989). With a known significance level, the formula
for the standard error is SE = sqrt(s (1 - s) / m],
where s is the significance level and m is the number
of monte carlo simulations.

This formula can be used to evaluate the
probability that a given approximate probability value
is less than a desired probability value. For example
the proba®%ility that the approximate probability value
of 0.016 is less than a desired probability value of
0.05 can be calculated from SE = [.05 (1 - .05) / 5000)
= ,00308. Using the standard z score formula,
2= (.016 - .05) / .00308 = -11.04. A 2z score of such
magnitude indicates that it is extremely unlikely that
the approximate probability value of 0.016 is greater
than the 0.05 level. In instances in which the
approximate probability value is close to the desired

value, a larger number of simulations could be carried

out.
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Program execution

The program asks for the analysis parameters
interactively and reads the data from a file. The
program requires the sample size per group for the
entire data set and the lower and upper ordinal values
that represent the desired split. For example, for a
sample size of 12 a lower value of 1 and an upper value
of 3 would compare the lower quarter of the
distributions, whereas a lower value of 9 and an upper
value of 12 would compare the upper third of the
distributions. The program also requests the number of
monte carlo simulations to carry out. On the VAX the
formula to estimate the execution time is Central
Processing Unit (CPU) seconds = 7.4E-5 (nm), where n is
the sample size per group after the data split. For
example, with a sample size after the data split of 40
per group and with 20,000 repetitions it requires
approximately 60 CPU seconds. Finally, the program
requires the name of the data file. The data is read
in groups using free format with one score per record.
The program then carries out the appropriate split on
the data and on the monte carlo simulations. The group
means on the split data, the test statistic and the
probability value is then calculated and printed out.

Table 2 gives the FORTRAN coding of the splits

analysis along with an efficient ANOVA function. The
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program will require a random normal deviate generator

Insert Table 2 about Here

and an efficient sorting routine. These are readily
available in Lehman (1977) and Miller (1982) or can be
obtained from the author.

The program currently runs on a VAX 8800 computer.
To run the program on another system it will probably
be necessary to change the OPEN statement and the unit
numbers associated with the READ and WRITE statements.
In addition the SECNDS and RAN functions may be
different on other systems. The SECNDS function is
used to give a different series of random numbers based
on the time in seconds since midnight. On systems
which cannot readily provide a function to give the
time the program can be modified to ask the user for a
seed (e.g., a random nine digit odd number) to start

the random number generator.
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Table 1

Sample splits analysis

Group 1 Group 2

13 28 Mean 1 Mean 2

16 29 16.0 30.0

19 33 Test Statistic: 36.75
...... oo Probability: 0.016
24 34

<9 38

32 40

36 41

37 43

42 45
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Table 2
Source Code for Splits Analysis
REAL X(1000), Y(1000), FMC(100000)
CHARACTER IFILE*20
XXX = 1.0
III = SECNDS(XXX) * 2000 + 1
WRITE (6,19)
i9 FORMAT (' This program calculates probability values'/
1 ' for splits on data. Give tne sample size per group,'/
1 ' upper and lower split values, and number of monte'/
1 ' carlo trials. '/)
READ (6,*) NPERG, ISPLTL, ISPLTU, NMC
XNMC = NMC
NSPLT = ISPLTU - ISPLTL + 1
XNSPLT = NSPLT
WRITE (6,29)
29 FORMAT (' Give the name of the data file '/)
READ (6,39) IFILE
39 FORMAT (A20)

OPEN (27, FILE = IFILE, STATUS = 'UNKNOWN')
DO 10 I = 1, NPERG
READ (27,*) X(I)
10 CONTINUE
DO 20 I = 1, NPERG
READ (27,%*) Y(I)
20 CONTINUE
CALL SORT (X, NPERG)
CALL SORT (Y, NPERG)
FOBS = ANOVA (X, Y, TOTX, TOTY, ISPLTL, ISPLTU, NSPLT)
XMEAN = TOTX / XNSPLT
YMEAN = TOTY / XNSPLT
DO 40 IREP = 1, NMC
DO 30 I = 1, NPERG
X(I) = RNORM(III)
Y(I) = RNORM(III)
30 CONTINUE
CALL SORT (X, NPERG)
CALL SORT (Y, NPERG)
FMC(IREP) = ANOVA (X, Y, TOTX, TOTY, ISPLTL, ISPLTU, NSPLT)
40 CONTINUE
CALL SORT (FMC, NMC)
ITST = 0

Table 2 contiiues
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Table 2, continued
Source Code for Splits Analysis
DO 50 IREP = 1, NMC
IF (FOBS .LT. FMC(IREP)) GOTO 51
ITST = ITST + 1
50 CONTINUE
51 CONTINUE
XTST = ITST
PROB = (XNMC - XTST) / XNMC
WRITE (6,49) XMEAN, YMEAN, FOBS, PROB
49 FORMAT (//" Means:',2F12.4/
1 ' Test Statistic:',Fl12.4/' Probability:',Fl12.4//)
STOP
END
C

FUNCTION ANOVA (X, Y, TOT1, TOT2, ISPLTL, ISPLTU, N)
REAL X(1000), Y(1000)

XN = N
XNTOT

DFW

TOT1
TOT2
SXSQ
DO 10 I = ISPLTL, ISPLTU

XN * 2.0
0 * (XN - 1.0)

2

U
00O

TOT1 = TOT1 + X(I)

TOT2 = TOT2 + Y(I)

SXSQ = SXSQ + X(I)**2 + Y(I)*%*2
10 CONTINUE

TOTV = (TOT1**2 + TOT2**2) / XN

CF = (TOT1 + TOT2)+**2 / XNTOT

SSB = TOTV - CF

SSW = SXSQ - TOTV

VMSW = SSW / DFW

ANOVA = 0.0

IF (VMSW .GT. 0.0) ANOVA = SSB / VMSW
RETURN

END




